HTU318

- Function largely independent of surface properties, ideal for detection of liquids, bulk materials, transparent media, ...
- Small dead zone at long scanning range
- Adjustment of the switching point can be taught
- NO/NC function reversible
- 1 switching output (PNP or NPN)
- Extra short construction
- NEW - Stable plastic design
- NEW - Temperature-compensated scanning range

Accessories:

(available separately)

- Mounting systems
- Mounting adapter M18-M30: BTX-D18M-D30 (Part no. 50125860)
- Cables with M12 connector (KD ...)
- Teach adapter PA1/XTSX-M12 (Part no. 50124709)

Dimensioned drawing

A Active sensor surface
B Indicator diodes

Electrical connection

Technical data

Ultrasonic specifications
Scanning range ${ }^{1)}$
Adjustment range
Ultrasonic frequency
Typ. opening angle
Resolution
Direction of beam
Reproducibility
Switching hysteresis
Temperature drift

Timing

Switching frequency
Response time
Readiness delay

Electrical data

Operating voltage U_{B})
Residual ripple
Open-circuit current
Switching output

Function

Output current
Switching range adjustment

Changeover
 NO/NC

Indicators

Yellow LED
Yellow LED, flashing
Green and yellow LEDs flashing
Green LED

Mechanical data

Housing
Active surface
Weight
Ultrasonic transducer
Connection type
Fitting position

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{7}$)
VDE protection class
Degree of protection
Standards applied
Certifications

1) At $20^{\circ} \mathrm{C}$
2) Target: $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ plate
3) From end value
4) Over the temperature range $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
5) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
6) The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)
7) 1=short-circuit and overload protection, $2=$ polarity reversal protection, $3=$ wire break and inductive protection
8) These proximity switches shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Teach-in
Teaching error
Object within the scanning range
Plastic (PBT)
Epoxy resin, glass fiber reinforced
65 g
Piezoceramic 6)
M12 connector, 4-pin
Any
$-20^{\circ} \ldots+70^{\circ} \mathrm{C} /-20^{\circ} \ldots+70^{\circ} \mathrm{C}$
1, 2,3
III
IP 67
EN 60947-5-2
UL 508, CSA C22.2 No.14-13 5) 8)

HTU318-1200/...-M12
$80 \ldots 1200 \mathrm{~mm}^{2)}$
$80 \ldots 1200 \mathrm{~mm}$
200 kHz
$8^{\circ} \pm 2^{\circ}$
$<2 \mathrm{~mm}$
Axial
$\pm 0.5 \%$ 1) 3)
$1 \% 3)$
$\leq 5 \%{ }^{4)}$

5 Hz
100 ms
$<100 \mathrm{~ms}$
$10 \ldots 30 \mathrm{VDC}$ (incl. $\pm 5 \%$ residual ripple)
$\pm 5 \%$ of U_{B}
$\leq 35 \mathrm{~mA}$
.../4... 1 PNP transistor switching output
.../2... 1 NPN transistor switching output
NO (normally open), preset
Max. 150mA
1-point teach: teach-in (pin 2) $2 \ldots 7 \mathrm{~s}$ to U_{B},
2-point teach: teach-in (pin 2) $7 \ldots 12$ s to U_{B}
Teach-in $(\operatorname{pin} 2)>12 s$ to U_{B}

OUT1: object detected
(M12
$7^{\circ} \pm 2^{\circ}$
< 2 mm
$\pm 0.5 \%$ 1) 3)
$1 \% 3)$
$\leq 5 \% 4)$

8 Hz
62 ms
< 100 ms

Diagrams

HTU318-300/...-M12

HTU318-1200/...-M12
Typ. response behavior (plate $100 \times 100 \mathrm{~mm}$)

Notes

Observe intended use!

${ }^{4}$ This product is not a safety sensor and is not intended as personnel protection.
${ }^{4}$ The product may only be put into operation by competent persons.
${ }^{\Perp}$ Only use the product in accordance with its intended use.

HTU318

Part number code

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{H} & \mathbf{T} & \mathbf{U} & \mathbf{3} & \mathbf{1} & \mathbf{8} & \mathbf{-} & \mathbf{1} & \mathbf{2} & \mathbf{0} & \mathbf{0} & . & \mathbf{3} & \mathbf{I} & \mathbf{4} & \mathbf{T} & \mathbf{-} & \mathbf{M} & \mathbf{1} \\
\mathbf{2} & \mathbf{2} \\
\hline
\end{array}
$$

Operating principle

HTU Ultrasonic sensor, scanning principle, with background suppression
DMU Ultrasonic sensor, distance measurement

Series

318318 series, cylindrical short M18 design

Scanning range in mm

300	$40 \ldots 300$	
$\mathbf{1 2 0 0}$	$80 \ldots$	1200

Equipment (optional)

. 3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (OUT1)
$4 \quad$ PNP output, NO contact preset
P PNP output, NC contact preset
2 NPN output, NO contact preset
N NPN output, NC contact preset
C Analog output $4 \ldots 20 \mathrm{~mA}$
V Analog output 0... 10V

Pin assignment of connector pin 2 / white cable wire (Teach-IN)
T Teach input

Connection technology
M12 M12 connector, 4-pin

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

Designation

Scanning range / switching output
$40 \ldots 300 \mathrm{~mm} /$ PNP
$40 \ldots 300 \mathrm{~mm} / \mathrm{NPN}$
$80 \ldots 1200 \mathrm{~mm} /$ PNP

200mm/PNP
$80 \ldots 1200 \mathrm{~mm} / \mathrm{NPN}$

HTU318-300/4T-M12
HTU318-300/2T-M12
HTU318-1200/4T-M12
HTU318-1200/2T-M12

Part no.

50136070
50136071
50136074
50136075

Device functions and indicators

All settings on the sensor are taught-in via the Teach-IN input. Device status and switching states are indicated as follows by means of a LED:

Switching behavior

Note!
The switching behavior is not defined in the dead zone.

Switching behavior with 2-point window-teach as a function of the switching function

Switching function configured as	First taught object distance	Second taught object distance	Output switching behavior
NO (normally open)	Far	Close	
	Close	Far	
NC (normally closed)	Far	Close	
	Close	Far	

HTU318

Ultrasonic sensors with 1 switching output

Adjusting the switching point via the teach input

The switching point of the sensor is set to 300 mm or 1200 mm on delivery.
By means of a simple teach event, the switching points can be individually taught to an arbitrary distance within the scanning range with 1-point teach (static) or 2-point window-teach (static). The Leuze PA1/XTSX-M12 Teach Adapter can be used for this purpose. The adapter can also be used to easily switch the output function from NO contact to NC contact.

1-point teach (static)	2-point window-teach (static)
1. Place object at desired switching distance.	1. First, place object at desired switching distance for switching point 1.
2. To adjust output OUT1, connect the Teach-IN input to $\mathbf{U}_{\mathbf{B}}$ for $\mathbf{2} \ldots \mathbf{7 s}$ (Leuze Teach Adapter: position "Teach- U_{B} "). The current state of output OUT1 is frozen while the adjustment is made.	2. To adjust output OUT1, connect the Teach-IN input to U_{B} for $7 \ldots$ 12s (Leuze Teach Adapter: position "Teach- U_{B} ") until the yellow and green LEDs flash alternately at 3 Hz .
3. The yellow LED flashes at 3 Hz and is then $\mathbf{O N}$. The current object distance has been taught as the new switching point.	3. Release the button. The sensor remains in teach mode and the LEDs continue to flash.
4. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): green and yellow LEDs flash at $\mathbf{8 H z}$ until an error-free teach event is performed.	4. Then, place the object at the desired switching distance for switching point 2. Note: The minimum distance between the switching points is as follows: scanning range of $400 \mathrm{~mm}: 40 \mathrm{~mm}$ scanning range of $1200 \mathrm{~mm}: 120 \mathrm{~mm}$
	5. To complete the teach event, briefly connect the Teach-IN input to $\mathbf{U}_{\mathbf{B}}$ again (Leuze Teach Adapter: position "Teach- U_{B} "). The switching window was taught in.
	6. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): green and yellow LEDs flash at $\mathbf{8 H z}$ until an error-free teach event is performed.

Adjusting the switching function (NC/NO) via the teach input

The switching function of the sensor is preset as follows on delivery:

- OUT 1: NO contact

The output function can be switched from NO contact (NO - normally open) to NC contact (NC - normally closed) and vice versa. Leuze Teach Adapter PA1/XTSX-M12 can be used for this purpose. If the switching function is changed, the switching output is changed to the opposite state (toggled).

Changeover of the switching function

1. To change the switching function, connect the Teach-IN input to U_{B} for more than $\mathbf{1 2 s}$ (Leuze Teach Adapter: position "Teach- U_{B} ").

The current state of output OUT1 is frozen while the adjustment is made.
2. The green and yellow LEDs flash alternately at 2 Hz .

The switching function was changed over.
The switching behavior corresponds to the diagram shown above.

Resetting to factory settings

The sensor can be reset to the factory setting (one switching point at 300 mm or 1200 mm).
Leuze Teach Adapter PA1/XTSX-M12 can be used for this purpose.

Resetting to factory settings

1. When switching on the supply voltage (during Power-On), connect the Teach-IN input to \mathbf{U}_{B} for $\boldsymbol{>} \mathbf{5 s}$ (Leuze Teach Adapter position "Teach- U_{B} "). The green and yellow LEDs flash alternately and very quickly for a brief time.
2. Disconnect the Teach-IN input from $\mathbf{U}_{\mathbf{B}}$. The sensor was reset to the factory setting:

1 switching point at 300 mm or 1200 mm (1-point teach, static).

