L49C Throughbeam photoelectric sensors

ม
150m

- Throughbeam photoelectric sensors with large operating range and high function reserve in red light and infrared light versions
- Robust plastic housing, degree of protection IP 67 and IP 69K for universal, industrial application
- Sensitivity adjustment and delay before start-up for optimal adaptation to the application
- Light/dark switching and time module activation via teach button for time-saving integration in existing evaluation environment
- Time-saving, exact alignment through additional, highly visible display
- Space-saving installation thanks to front access to the connection compartment
- Extremely time-saving connection by means of spring terminals (up to $1.5 \mathrm{~mm}^{2}$)

Dimensioned drawing

$\mathbf{A}_{\mathbf{A}} \quad$ Green indicator diode
$\mathbf{A}_{\mathbf{B}}$ Yellow indicator diode

B Optical axis
C Receiver
D Transmitter
E Sensitivity adjustment
F Teach button for light/dark switching / time module activation
G Countersinking for SK nut M5, 4.2 deep
H Connection compartment with spring terminals
J Cable entry with M16x1.5 screw fitting for $Ø 5$... 10 mm
K Yellow indicator diode
Transmitter: active/not active
Receiver: signal/no signal

Electrical connection

Transmitter

Selection of terminal 3

Receiver

Selection of terminal 4

OUT
OUT 2
Warn
NC

- Alignment aid (SAT 5)
- Laser alignment aid (ARH 49C)

Technical data

Optical data
Typ. operating range limit ${ }^{1)}$
Operating range ${ }^{2}$
Light source ${ }^{3}$
Wavelength

Timing

Switching frequency
Response time
Readiness delay

Electrical data

Operating voltage $U_{B}{ }^{4}$)

Residual ripple
Open-circuit current
Switching outputs/functions ${ }^{5)}$

Signal voltage high/low
Output current
Sensitivity/operating range adjustment

Indicators

Green LED
Yellow LED
Yellow LED, flashing
Yellow LED (behind lens cover)
Yellow LED (behind lens cover), flashing

Mechanical data

Housing
Optics cover
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit
VDE safety class ${ }^{7}$)
Degree of protection
Light source
Standards applied
Certifications

Additional functions

Switching function (teach level 1)
Time module (teach level 2)

Warning output

Signal voltage high/low
Output current
Activation input
Transmitter active/not active
Activation/disable delay
Input resistance

L49C...
$0 . .150 \mathrm{~m}$
$0.5 \ldots 120 \mathrm{~m}$
LED (modulated light)
630 nm (red light)
500 Hz
1 ms
$\leq 300 \mathrm{~ms}$
10...30VDC (incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 20 \mathrm{~mA}$
/4P 2 PNP switching outputs, antivalent
/4W 1 PNP switching output, light switching, 1 PNP warning
output
/4X 1 PNP switching output, light switching
/PX 1 PNP switching output, dark switching
/2N 2 NPN switching outputs, antivalent
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Max. 100 mA
225° potentiometer (only LE49C[I].1...)

Ready

Light path free
Light path free, no function reserve
Transmitter: active/not active
Receiver: signal/no signal
Receiver: signal, function reserve limited

Polycarbonate
Plastic
150 g
Spring terminals, max. wire cross section $1.5 \mathrm{~mm}^{2}$
$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
1, 2, 3
II, all-insulated
IP 67, IP 69K ${ }^{8)}$
Exempt group (in acc. with EN 62471)
EC 60947-5-2
UL 508, CSA C22.2 No.14-13 4) 9)

Light switching (factory setting) or dark switching
Active: dropout delay 500 ms
Not active:no dropout delay (factory setting)
PNP transistor, counting principle
$\geq\left(U_{B}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
Max. 100 mA
$\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$
$\leq 1 \mathrm{~ms}$
$10 \mathrm{k} \Omega \pm 10 \%$

1) Typ. operating range limit: max. attainable range without function reserve
2) Operating range: recommended range with function reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits only
5) See part number code
6) 1=transient protection, 2=polarity reversal protection, $3=$ short circuit protection for all outputs
7) Rating voltage 50 V
8) IP 69 K test acc. to DIN 40050 part 9 simulated, high pressure cleaning conditions without the use of additives, acids and bases are not part of the test
9) These proximity switches shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Tables

$0 / 0,5$	120	150

Operating range [m] Typ. operating range limit [m]

Diagrams

L49C... with red light

L49Cl. . . with infrared light

Notes

Observe intended use!

$\stackrel{7}{7}$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{\leftrightarrow}{\Perp}$ The product may only be put into operation by competent persons.
${ }{ }^{\leftrightarrows}$ Only use the product in accordance with its intended use.

- A light axis consists of a transmitter and a receiver with the following designations:
L49C[I]... = light axis, complete LS49C[I] ... = transmitter
LE49C[I] ... = receiver
- Alignment indicator: ('K' see dimensioned drawing)
Yellow LED =
light path free - with reserve
Yellow LED, flashing = light path free - no function reserve

Part number code

TB
Terminal block - terminal compartment with spring terminals ($5 \times 1.5 \mathrm{~mm}^{2}$)

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

Teach procedure for sensor

Note

Factory setting: light switching, time module not active

Light/dark switching

Adjusting the switching behavior

Activation/deactivation of the time module

Setting a slow release

Teach level 2	Press teach button (7 to 12s) until both LEDs (green/yellow) flash alternately. Release teach button - activation/deactivation is complete. The yellow LED then indicates the current setting of the dropout delay for $3 \mathrm{~s}:$ $\mathrm{ON}=$ time module not active $=$ no dropout delay $\mathbf{O F F}=$ time module active $=\quad$ dropout delay: $500 \mathrm{~ms}{ }^{1)}$ 1) Additional models on request

Dropout delay: if the object is no longer present, the output switches with a time delay.

