MA 4/MA 4D
Connector unit for BCL 21/22 and BCL 31/32

- May be used with BCL 21/22 and 31/32
- The integrated failure-safe parameter memory for the BCL data (EEPROM) permits exchanging the BCL without reconfiguration
- Integrated two-line display with 16 characters each (MA 4D only)
- Networking of several BCL 21 or BCL 31 via RS485 interface, hardware addressing in Leuze multiNetplus
- Additional RS232 service interface (9-pin sub D connector), operating mode switch service/standard operation
- Terminals for switching inputs and outputs including power supply and for looping through of the the RS 485 line (BCL 21/31)
- Rotary switch for address setting

Dimensioned drawing

A LED indicator
B LCD indicator

Electrical Connection

A Setting of the device address
B Setting of the device address
C Service/operation switch
D Attached label with terminal assign. for RS232
E Attached label with terminal assign. for RS485

Specifications

Electrical data

Operating voltage U_{B}
Power consumption
Switching input
Switching output
Mechanical data
Housing
Housing cover
Dimensions
Weight
Connection type
Environmental data
Ambient temp. (operation/storage)
Protection class
Valid standards document
Air humidity

Indicators

LED green
Display

```
MA 4
MA 4D
10... 30VDC
0.2VA
12 ... 30VDC
max = 100mA
output voltage = operating voltage
diecast aluminium
sheet stee
130 x 90 x 33mm (H x W x D)
0.665 kg 0.672 kg
cable with connector
-10 C ... +50 }\mp@subsup{}{}{\circ}\textrm{C}/-2\mp@subsup{0}{}{\circ}\textrm{C}\ldots+6\mp@subsup{0}{}{\circ}\textrm{C
IP }5
IEC }80
max. 90% rel. humidity, non-condensing
```

switch 1

LCD display - two lines with 16 characters each

Description

The MA 4 or MA 4D is a connector unit for the bar code readers BCL 21/22 and BCL 31/32. It significantly simplifies both the electrical installation and the commissioning and maintenance of the respective BCL. In addition, it permits the networking of several bar code readers. The figure shows the combination of the connector unit and a BCL device.

The connector unit permits the storage of the current parameter set in the BCL into a non-volatile EEPROM to protect against power supply disruptions. This has the advantage that the BCL does not have to be reconfigured when it is exchanged. After plug-in, the parameters are loaded automatically into the BCL memory.

The MA 4D model also has a two-line display with 16 characters each for the display of parameters and operating values. According to your preferences, one or two results may be displayed. The various display modes are stored in the parameter set of the BCL.
All BCL 21/22 from software version 02.00 onwards or all BCL 31/32 with a PCB connector and a cable length of up to 3 m may be used with the MA 4/MA 4D. The data are coded in the BCL identifier as follows:

BCL 21/22 XYZ
The connector type is coded at the \mathbf{X} location:
$X=2$: LP connector
The length of the connection cable used is coded at the \mathbf{Y} location:
$\mathbf{Y}=0: 0,8 \mathrm{~m}$ connecting cable
$\mathbf{Y}=1: 3 \mathrm{~m}$ connecting cable
The BCL 31/32 is connected to the MA 4 or MA 4D via KB 0313000.

Order guide

Type	Order code
Connector unit for BCL 21/22 and BCL 31/32 without displayMA 4	50031537
Connector unit for BCL 21/22 and BCL 31/32 with display MA 4D	50031536

Tables

Remarks

When changing from BCL 21 or 31 to BCL 22 or 32, and vice versa, the scanner must be reset, e.g., with PC20.
Detailed information can be found in the operating manual of the corresponding BCL
The BCL must not be plugged in when the power is on.

MA 4/MA 4D

Operating elements

Setting the network address
Rotary switch
Jumper

Interface mode

DIP switch

Service connector

Sub-D connector, 9 pin
position 0: operation with BCL 22 or BCL 32
position 1 to F : multiNet slave address
top: low address range $0 \ldots 15$
bottom: high address range $16 \ldots 31$
SERV: service interface active / host interface deactivated
BETR: host interface active

RS 232 interface for service/setup operation
standard data format: 9600 baud, 8 data bits, 1 stop bit, no parity
$2=R x D, 3=T x D, 5=G N D$

Connector for BCL 21/22, BCL 31/32

PCB connector
connection for the BCL

RS 232 interface

Terminal 23
Terminal 24
Terminals 5-6

RS 485 interface

Terminals 1-2
Terminals 3-4
Terminals 5-6

Switching inputs

Terminal 7
Terminal 9
Terminal 11
Terminal 12

Switching outputs

Terminal 13
Terminal 14
Terminal 16

Operating voltage

Terminals 17-18
Terminals 19-20
Terminals 21-22

The RS232 interface is not floating.
BCL 21 and BCL 31: RES
BCL 22 and BCL 32: RxD
$B C L 21$ and BCL 31: RES,
BCL 22 and BCL 32: TxD
$B C L 22$ and BCL 32: GND

The RS 485 interface connections are implemented twice, for insertion.
The RS 485 interface is not floating.
RS 485A (line A)
RS 485B (line B)
RS 485 GND

BCL 21 and BCL 31 (one switching input): RES,
BCL 22 and BCL 32 (two switching inputs): SE2 - switching input 2, $12 \ldots 30 \mathrm{VDC}$
SE1 - switching input $1,12 \ldots 30$ VDC
VDD_SE - supply voltage, switching input, equal to V_IN device
GND_SE - supply voltage, switching input, equal to GND_IN device
12 ... 30VDC switching input asymmetric to GND

BCL 21 and BCL 31 (one switching output): RES,
BCL 22 and BCL 32 (two switching outputs): SA2 - switching output 2
SA1 - switching output 1
GND SA - external supply voltage switching output OVDC
Load must be connected asymmetrically to GND.
The switching voltage for the output is generated by the operating voltage V_IN:
VDD_SA = VDD_IN
GND_SA = GND_IN

Connection terminals for the operating voltage of the MA 4 (10 ... 30VDC) and for the BCL used.
Dual design of the voltage supply connections for insertion or for the supply of further components.
Attention! PE must be connected for protection against faults!
V_IN operating voltage 10 ... 30VDC
GND_IN operating voltage OVDC
PE protective earth, grounding

Circuitry of the connector unit

Indicators

A LED labelled "SWO" is located on top of the connector unit. It indicates the state of the switching output 1. In addition, the MA 4D features the 2×16-character LCD display.

In the standard setting, the LED indicates the decoding of a bar code.
Please refer to the Technical Description BCL 21/22 or BCL 31/32 for further states of the switching output.

Operating the MA 4D LCD display

If the LCD display is configured and ready for operation, the required information such as data read, software version, or status displays is shown automatically.

Format

The configuration of the LCD display is possible for BCL 21/22 from version 2.0 onwards and for BCL 31/32.
The LCD display contains two lines with 16 characters each. There are 3 display modes:

1. Single line:
a result is output in one line. If the information is longer than 16 characters, the characters >16 are cut off. This means that two results may be output on the LCD display.
2. Double line:
a result is displayed over both lines. Thus, only one result is visible in the display.
3. Depending on the size:
if a result is > 16 characters, both lines are used
if a result is <16 characters, one line is used and two results are displayed

Address	Size	Designation	Range of values	Standard
161	byte	Icd_output_format	$1:$ single line (two results) $2:$ double line (one result) 0: depending on the size	2: double line (one result visible)

The input can be specified as a PT commentary or in the BCL Config parameter list, e.g., PT0001610x.

Text output

If a text from the controller is to be output to the MA 4D, the following command must be used. The text is output in the preselected line format

Command: M[Text]
e.g.: if the text "input" is to be output to the LCD display, the command is: MInput

